Applications of artificial intelligence in cardiovascular imaging

Research into artificial intelligence (AI) has made tremendous progress over the past decade. In particular, the AI-powered analysis of images and signals has reached human-level performance in many applications owing to the efficiency of modern machine learning methods, in particular deep learning using convolutional neural networks. Research into the application of AI to medical imaging is now very active, especially in the field of cardiovascular imaging because of the challenges associated with acquiring and analysing images of this dynamic organ. In this Review, we discuss the clinical questions in cardiovascular imaging that AI can be used to address and the principal methodological AI approaches that have been developed to solve the related image analysis problems. Some approaches are purely data-driven and rely mainly on statistical associations, whereas others integrate anatomical and physiological information through additional statistical, geometric and biophysical models of the human heart. In a structured manner, we provide representative examples of each of these approaches, with particular attention to the underlying computational imaging challenges. Finally, we discuss the remaining limitations of AI approaches in cardiovascular imaging (such as generalizability and explainability) and how they can be overcome.

Key points

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

206,07 € per year

only 17,17 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries

Article 18 July 2023

Deep learning interpretation of echocardiograms

Article Open access 24 January 2020

Deep convolutional neural networks to predict cardiovascular risk from computed tomography

Article Open access 29 January 2021

References

  1. Greenspan, H., van Ginneken, B. & Summers, R. M. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging35, 1153–1159 (2016). ArticleGoogle Scholar
  2. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature521, 436–444 (2015). ArticleCASPubMedGoogle Scholar
  3. Dey, D. et al. Artificial intelligence in cardiovascular imaging. J. Am. Coll. Cardiol.73, 1317–1335 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  4. Siegersma, K. R. et al. Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist. Neth. Heart J.27, 403–413 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  5. Henglin, M. et al. Machine learning approaches in cardiovascular imaging. Circ. Cardiovasc. Imaging10, e005614 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  6. O’Regan, D. P. Putting machine learning into motion: applications in cardiovascular imaging. Clin. Radiol.75, 33–37 (2019). ArticlePubMedGoogle Scholar
  7. Seetharam, K., Shrestha, S. & Sengupta, P. P. Artificial intelligence in cardiovascular medicine. Curr. Treat. Options Cardiovasc. Med.21, 25 (2019). ArticlePubMedGoogle Scholar
  8. Litjens, G. et al. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc. Imaging12, 1549–1565 (2019). ArticlePubMedGoogle Scholar
  9. Leiner, T. et al. Machine learning in cardiovascular magnetic resonance: basic concepts and applications. J. Cardiovasc. Magn. Reson.21, 61 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  10. Lundervold, A. S. & Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys.29, 102–127 (2019). ArticlePubMedGoogle Scholar
  11. Hampe, N., Wolterink, J. M., van Velzen, S. G. M., Leiner, T. & Išgum, I. Machine learning for assessment of coronary artery disease in cardiac CT: a survey. Front. Cardiovasc. Med.6, 172 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  12. Alsharqi, M. et al. Artificial intelligence and echocardiography. Echo Res. Pract.5, R115–R125 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  13. van Sloun, R. J. G., Cohen, R. & Eldar, Y. C. Deep learning in ultrasound imaging. Proc. IEEE108, 11–29 (2020). ArticleGoogle Scholar
  14. Cluitmans, M. et al. Validation and opportunities of electrocardiographic imaging: from technical achievements to clinical applications. Front. Physiol.9, 1305 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  15. Alawad, M. & Wang, L. Learning domain shift in simulated and clinical data: localizing the origin of ventricular activation from 12-lead electrocardiograms. IEEE Trans. Med. Imaging38, 1172–1184 (2019). ArticlePubMedGoogle Scholar
  16. Bacoyannis, T., Krebs, J., Cedilnik, N., Cochet, H. & Sermesant, M. in Functional Imaging and Modeling of the Heart Ch. 3 (eds Coudière, Y., Ozenne, V., Vigmond, E. & Zemzemi, N.) 20–28 (Springer, 2019).
  17. Bai, W. et al. A population-based phenome-wide association study of cardiac and aortic structure and function. Nat. Med.26, 1654–1662 (2020). ArticleCASPubMedGoogle Scholar
  18. Petersen, S. E., Abdulkareem, M. & Leiner, T. Artificial intelligence will transform cardiac imaging — opportunities and challenges. Front. Cardiovasc. Med.6, 169 (2019). ArticleGoogle Scholar
  19. Attia, Z. I. et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med.25, 70–74 (2019). ArticleCASPubMedGoogle Scholar
  20. Bernard, O. et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging37, 2514–2525 (2018). ArticlePubMedGoogle Scholar
  21. Zhang, N. et al. Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI. Radiology291, 606–617 (2019). ArticlePubMedGoogle Scholar
  22. Bello, G. A. et al. Deep learning cardiac motion analysis for human survival prediction. Nat. Mach. Intell.1, 95–104 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  23. Bruse, J. L. et al. in Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges Ch. 3 (eds Camara, O. et al.) 21–29 (Springer, 2016).
  24. Leonardi, B. et al. Computational modelling of the right ventricle in repaired tetralogy of Fallot: can it provide insight into patient treatment? Eur. Heart J. Cardiovasc. Imaging14, 381–386 (2013). ArticlePubMedGoogle Scholar
  25. Grbic, S. et al. Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography. Med. Image Anal.35, 238–249 (2017). ArticlePubMedGoogle Scholar
  26. European Society of Radiology. What the radiologist should know about artificial intelligence — an ESR white paper. Insights Imaging10, 44 (2019). ArticleGoogle Scholar
  27. James, G., Witten, D., Hastie, T. & Tibshirani, R. in An Introduction to Statistical Learning Ch. 2 26–28 (Springer, 2013).
  28. Hu, S.-Y. et al. Can machine learning improve patient selection for cardiac resynchronization therapy? PLoS ONE14, e0222397 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  29. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer18, 500–510 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  30. Cheplygina, V., de Bruijne, M. & Pluim, J. P. W. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal.54, 280–296 (2019). ArticlePubMedGoogle Scholar
  31. Mlynarski, P., Delingette, H., Criminisi, A. & Ayache, N. Deep learning with mixed supervision for brain tumor segmentation. J. Med. Imaging6, 034002 (2019). ArticleGoogle Scholar
  32. Rueckert, D. & Schnabel, J. A. Model-based and data-driven strategies in medical image computing. Proc. IEEE108, 110–124 (2020). ArticleGoogle Scholar
  33. Saba, L. et al. The present and future of deep learning in radiology. Eur. J. Radiol.114, 14–24 (2019). ArticlePubMedGoogle Scholar
  34. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal.42, 60–88 (2017). ArticlePubMedGoogle Scholar
  35. Ronneberger, O., Fischer, P. & Brox, T. in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015 (eds Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) 234–241 (Springer, 2015).
  36. Goodfellow, I. et al. in Advances in Neural Information Processing Systems 27 (eds Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D. & Weinberger, K. Q.) 2672–2680 (Curran Associates, 2014).
  37. Kingma, D. P. & Welling, M. An introduction to variational autoencoders. Found. Trends Mach. Learn.12, 307–392 (2019). ArticleGoogle Scholar
  38. Pesapane, F., Codari, M. & Sardanelli, F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp.2, 35 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  39. Bhuva, A. et al. A multicenter, scan-rescan, human and machine learning CMR study to test generalizability and precision in imaging biomarker analysis. Circ. Cardiovasc. Imaging12, e009214 (2019). ArticlePubMedGoogle Scholar
  40. Oksuz, I. et al. Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning. Med. Image Anal.55, 136–147 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  41. Oksuz, I. et al. in Medical Image Computing and Computer Assisted Intervention — MICCAI 2019 (eds Shen, D. et al.) 695–703 (Springer, 2019).
  42. Schlemper, J. et al. in Medical Image Computing and Computer Assisted Intervention — MICCAI 2019 (eds Shen, D. et al.) 57–64 (Springer, 2019).
  43. Hyun, C. M., Kim, H. P., Lee, S. M., Lee, S. & Seo, J. K. Deep learning for undersampled MRI reconstruction. Phys. Med. Biol.63, 135007 (2018). ArticlePubMedGoogle Scholar
  44. Qin, C. et al. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging38, 280–290 (2019). ArticlePubMedGoogle Scholar
  45. Bustin, A., Fuin, N., Botnar, R. M. & Prieto, C. From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front. Cardiovasc. Med.7, 17 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  46. Oksuz, I. et al. Magnetic resonance fingerprinting using recurrent neural networks. IEEE Int. Symp. Biomed. Imaginghttps://doi.org/10.1109/ISBI.2019.8759502 (2019).
  47. Willemink, M. J. & Noël, P. B. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur. Radiol.29, 2185–2195 (2019). ArticlePubMedGoogle Scholar
  48. Green, M., Marom, E. M., Konen, E., Kiryati, N. & Mayer, A. 3-D Neural denoising for low-dose Coronary CT Angiography (CCTA). Comput. Med. Imaging Graph.70, 185–191 (2018). ArticlePubMedGoogle Scholar
  49. Lossau, T. et al. Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks. Med. Image Anal.52, 68–79 (2019). ArticleCASPubMedGoogle Scholar
  50. Zhang, L. et al. in Simulation and Synthesis in Medical Imaging (eds Tsaftaris, S. A., Gooya, A., Frangi, A. F. & Prince, J. L.) 138–145 (Springer, 2016).
  51. Biasiolli, L. et al. Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data. PLoS ONE14, e0212272 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  52. Tarroni, G. et al. Learning-based quality control for cardiac MR images. IEEE Trans. Med. Imaging38, 1127–1138 (2019). ArticlePubMedGoogle Scholar
  53. Zhang, L. et al. Automatic assessment of full left ventricular coverage in cardiac cine magnetic resonance imaging with fisher discriminative 3D CNN. IEEE Trans. Biomed. Eng.66, 1975–1986 (2018). ArticleGoogle Scholar
  54. Dong, J. et al. A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J. Biomed. Health Inform.24, 931–942 (2019). ArticlePubMedGoogle Scholar
  55. Robinson, R. et al. Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study. J. Cardiovasc. Magn. Reson.21, 18 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  56. Albà, X. et al. Automatic initialization and quality control of large-scale cardiac MRI segmentations. Med. Image Anal.43, 129–141 (2018). ArticlePubMedGoogle Scholar
  57. Audelan, B. & Delingette, H. in Medical Image Computing and Computer Assisted Intervention — MICCAI 2019 (eds Shen, D. et al.) 21–29 (Springer, 2019).
  58. Vigneault, D. M., Xie, W., Ho, C. Y., Bluemke, D. A. & Noble, J. A. Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med. Image Anal.48, 95–106 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  59. Zheng, Q., Delingette, H., Duchateau, N. & Ayache, N. 3-D consistent and robust segmentation of cardiac images by deep learning with spatial propagation. IEEE Trans. Med. Imaging37, 2137–2148 (2018). ArticlePubMedGoogle Scholar
  60. Ambrosini, P. et al. in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2017 (eds Descoteaux, M. et al) 577–585 (Springer, 2017).
  61. Ghorbani, A. et al. Deep learning interpretation of echocardiograms. NPJ Digital Med.3, 10 (2020). ArticleGoogle Scholar
  62. Ghesu, F.-C. et al. Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans. Pattern Anal. Mach. Intell.41, 176–189 (2019). ArticlePubMedGoogle Scholar
  63. Noothout, J. M. H. et al. Deep learning-based regression and classification for automatic landmark localization in medical images. IEEE Trans. Med. Imaging39, 4011–4022 (2020). ArticlePubMedGoogle Scholar
  64. Chen, C. et al. Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med.7, 25 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  65. Isensee, F. et al. in Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges (eds Pop, M. et al.) 120–129 (Springer, 2018).
  66. Clough, J. R., Oksuz, I., Byrne, N., Schnabel, J. A. & King, A. P. in Information Processing in Medical Imaging (eds Chung, A. C. S., Gee, J. C., Yushkevich, P. A. & Bao, S.) 16–28 (Springer, 2019).
  67. Duan, J. et al. Automatic 3D Bi-ventricular segmentation of cardiac images by a shape-refined multi- task deep learning approach. IEEE Trans. Med. Imaging38, 2151–2164 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  68. Albà, X. et al. An algorithm for the segmentation of highly abnormal hearts using a generic statistical shape model. IEEE Trans. Med. Imaging35, 845–859 (2016). ArticlePubMedGoogle Scholar
  69. Liao, F., Chen, X., Hu, X. & Song, S. Estimation of the volume of the left ventricle from MRI images using deep neural networks. IEEE Trans. Cybern.49, 495–504 (2019). ArticlePubMedGoogle Scholar
  70. Margeta, J. et al. in Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (eds Camara, O. et al.) 49–56 (Springer, 2014).
  71. Bai, W. et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson.20, 65 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  72. Gilbert, K. et al. Independent left ventricular morphometric atlases show consistent relationships with cardiovascular risk factors: A UK biobank study. Sci. Rep.9, 1130 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  73. Lee, M. C. H., Petersen, K., Pawlowski, N., Glocker, B. & Schaap, M. Tetris: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging38, 2596–2606 (2019). ArticlePubMedGoogle Scholar
  74. Zhuang, X. et al. Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med. Image Anal.58, 101537 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  75. Gilbert, A. et al. in Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis (eds Wang, Q. et al.) 29–37 (Springer, 2019).
  76. Huang, X. et al. Contour tracking in echocardiographic sequences via sparse representation and dictionary learning. Med. Image Anal.18, 253–271 (2014). ArticlePubMedGoogle Scholar
  77. Leclerc, S. et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography. IEEE Trans. Med. Imaging38, 2198–2210 (2019). ArticlePubMedGoogle Scholar
  78. Asch, F. M. et al. Automated echocardiographic quantification of left ventricular ejection fraction without volume measurements using a machine learning algorithm mimicking a human expert. Circ. Cardiovasc. Imaging12, e009303 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  79. Andreassen, B. S., Veronesi, F., Gerard, O., Solberg, A. H. S. & Samset, E. Mitral annulus segmentation using deep learning in 3-D transesophageal echocardiography. IEEE J. Biomed. Health Inform.24, 994–1003 (2020). ArticlePubMedGoogle Scholar
  80. Wolterink, J. M., Leiner, T. & Išgum, I. in Graph Learning in Medical Imaging (eds Zhang, D., Zhou, L., Jie, B. & Liu, M.) 62–69 (Springer, 2019).
  81. Itu, L. et al. A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J. Appl. Physiol.121, 42–52 (2016). ArticlePubMedGoogle Scholar
  82. Yang, S. et al. Deep learning segmentation of major vessels in X-ray coronary angiography. Sci. Rep.9, 16897 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  83. Duchateau, N., King, A. P. & De Craene, M. Machine learning approaches for myocardial motion and deformation analysis. Front. Cardiovasc. Med.6, 190 (2019). ArticlePubMedGoogle Scholar
  84. Krebs, J., Delingette, H., Mailhe, B., Ayache, N. & Mansi, T. Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imaging38, 2165–2176 (2019). ArticlePubMedGoogle Scholar
  85. Zheng, Q., Delingette, H. & Ayache, N. Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow. Med. Image Anal.56, 80–95 (2019). ArticlePubMedGoogle Scholar
  86. Yan, W., Wang, Y., van der Geest, R. J. & Tao, Q. Cine MRI analysis by deep learning of optical flow: adding the temporal dimension. Comput. Biol. Med.111, 103356 (2019). ArticlePubMedGoogle Scholar
  87. Parajuli, N. et al. Flow network tracking for spatiotemporal and periodic point matching: applied to cardiac motion analysis. Med. Image Anal.55, 116–135 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  88. Lu, A. et al. in Medical Image Computing and Computer-Assisted Intervention — MICCAI 2017 (eds Descoteaux, M. et al.) 323–331 (Springer, 2017).
  89. Song, S. et al. Deep motion tracking from multiview angiographic image sequences for synchronization of cardiac phases. Phys. Med. Biol.64, 025018 (2019). ArticlePubMedGoogle Scholar
  90. Attar, R. et al. Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation. Med. Image Anal.56, 26–42 (2019). ArticlePubMedGoogle Scholar
  91. Mantilla, J. J. et al. Discriminative dictionary learning for local LV wall motion classification in cardiac MRI. Expert. Syst. Appl.129, 286–295 (2019). ArticleGoogle Scholar
  92. Duchateau, N., De Craene, M., Piella, G. & Frangi, A. F. Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal.16, 1532–1549 (2012). ArticlePubMedGoogle Scholar
  93. Sengupta, P. P. et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ. Cardiovasc. Imaging9, e004330 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  94. Sanchez-Martinez, S. et al. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med. Image Anal.35, 70–82 (2017). ArticlePubMedGoogle Scholar
  95. Meyer, H. V. et al. Genetic and functional insights into the fractal structure of the heart. Nature584, 589–594 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  96. Zreik, M. et al. Deep learning analysis of coronary arteries in cardiac CT angiography for detection of patients requiring invasive coronary angiography. IEEE Trans. Med. Imaging36, 1545–1557 (2019). Google Scholar
  97. Martin, S. S. et al. Evaluation of a deep learning-based automated CT coronary artery calcium scoring algorithm. JACC Cardiovasc. Imaging13, 524–526 (2019). ArticlePubMedGoogle Scholar
  98. Cikes, M. et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur. J. Heart Fail.21, 74–85 (2019). ArticlePubMedGoogle Scholar
  99. Alis, D., Guler, A., Yergin, M. & Asmakutlu, O. Assessment of ventricular tachyarrhythmia in patients with hypertrophic cardiomyopathy with machine learning-based texture analysis of late gadolinium enhancement cardiac MRI. Diagn. Interv. Imaging101, 137–146 (2019). ArticlePubMedGoogle Scholar
  100. Hilbert, A. et al. Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke. Comput. Biol. Med.115, 103516 (2019). ArticleCASPubMedGoogle Scholar
  101. Bruse, J. L. et al. Detecting clinically meaningful shape clusters in medical image data: metrics analysis for hierarchical clustering applied to healthy and pathological aortic arches. IEEE Trans. Biomed. Eng.64, 2373–2383 (2017). ArticlePubMedGoogle Scholar
  102. Hunter, P. The virtual physiological human: the physiome project aims to develop reproducible, multiscale models for clinical practice. IEEE Pulse7, 36–42 (2016). ArticlePubMedGoogle Scholar
  103. Ayache, N. Medical imaging informatics: towards a personalized computational patient. Yearb. Med. Inform.25 (Suppl. 1), S8–S9 (2016). Google Scholar
  104. Bassingthwaighte, J., Hunter, P. & Noble, D. The cardiac physiome: perspectives for the future. Exp. Physiol.94, 597–605 (2009). ArticleCASPubMedGoogle Scholar
  105. Chapelle, D., Le Tallec, P., Moireau, P. & Sorine, M. Energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Mult. Comp. Eng.10, 189–211 (2012). ArticleGoogle Scholar
  106. Suinesiaputra, A., McCulloch, A. D., Nash, M. P., Pontre, B. & Young, A. A. Cardiac image modelling: Breadth and depth in heart disease. Med. Image Anal.33, 38–43 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  107. Niederer, S. A., Lumens, J. & Trayanova, N. A. Computational models in cardiology. Nat. Rev. Cardiol.16, 100–111 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  108. Comaniciu, D., Engel, K., Georgescu, B. & Mansi, T. Shaping the future through innovations: from medical imaging to precision medicine. Med. Image Anal.33, 19–26 (2016). ArticlePubMedGoogle Scholar
  109. Molléro, R. et al. Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models. Biomech. Model. Mechanobiol.17, 285–300 (2018). ArticlePubMedGoogle Scholar
  110. Corral-Acero, J. et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J.41, 4556–4564 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  111. Chabiniok, R. et al. Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus.6, 20150083 (2016). ArticlePubMedPubMed CentralGoogle Scholar
  112. Sermesant, M. et al. Toward patient-specific myocardial models of the heart. Heart Fail. Clin.4, 289–301 (2008). ArticlePubMedGoogle Scholar
  113. This, A., Morales, H. G., Bonnefous, O., Fernández, M. A. & Gerbeau, J.-F. A pipeline for image based intracardiac CFD modeling and application to the evaluation of the PISA method. Comput. Methods Appl. Mech. Eng.358, 112627 (2020). ArticleGoogle Scholar
  114. Vignon-Clementel, I. E., Marsden, A. L. & Feinstein, J. A. A primer on computational simulation in congenital heart disease for the clinician. Prog. Pediatr. Cardiol.30, 3–13 (2010). ArticleGoogle Scholar
  115. Sermesant, M. et al. Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med. Image Anal.16, 201–215 (2012). ArticleCASPubMedGoogle Scholar
  116. Chen, Z. et al. Biophysical modeling predicts ventricular tachycardia inducibility and circuit morphology: a combined clinical validation and computer modeling approach. J. Cardiovasc. Electrophysiol.27, 851–860 (2016). ArticleCASPubMedGoogle Scholar
  117. Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The living heart project: a robust and integrative simulator for human heart function. Eur. J. Mech. A Solids48, 38–47 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  118. Kayvanpour, E. et al. Towards personalized cardiology: multi-scale modeling of the failing heart. PLoS ONE10, e0134869 (2015). ArticlePubMedPubMed CentralCASGoogle Scholar
  119. Zhang, F. et al. Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation. Med. Image Anal.35, 599–609 (2017). ArticlePubMedGoogle Scholar
  120. Lluch, È. et al. Breaking the state of the heart: meshless model for cardiac mechanics. Biomech. Model. Mechanobiol.18, 1549–1561 (2019). ArticlePubMedGoogle Scholar
  121. Garny, A., Noble, D. & Kohl, P. Dimensionality in cardiac modelling. Prog. Biophys. Mol. Biol.87, 47–66 (2005). ArticlePubMedGoogle Scholar
  122. Neumann, D. et al. A self-taught artificial agent for multi-physics computational model personalization. Med. Image Anal.34, 52–64 (2016). ArticlePubMedGoogle Scholar
  123. Lozoya, R. C. et al. Model-based feature augmentation for cardiac ablation target learning from images. IEEE Trans. Biomed. Eng.66, 30–40 (2018). ArticlePubMedGoogle Scholar
  124. Alber, M. et al. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digital Med.2, 115 (2019). ArticleGoogle Scholar
  125. Prakosa, A. et al. Generation of synthetic but visually realistic time series of cardiac images combining a biophysical model and clinical images. IEEE Trans. Med. Imaging32, 99–109 (2013). ArticlePubMedGoogle Scholar
  126. Duchateau, N., Sermesant, M., Delingette, H. & Ayache, N. Model-based generation of large databases of cardiac images: synthesis of pathological cine MR sequences from real healthy cases. IEEE Trans. Med. Imaging37, 755–766 (2018). ArticlePubMedGoogle Scholar
  127. Heimann, T., Mountney, P., John, M. & Ionasec, R. Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data. Med. Image Anal.18, 1320–1328 (2014). ArticlePubMedGoogle Scholar
  128. Kissas, G. et al. Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng.358, 112623 (2020). ArticleGoogle Scholar
  129. Ayed, I., Cedilnik, N., Gallinari, P. & Sermesant, M. in Functional Imaging and Modeling of the Heart (eds Coudière, Y., Ozenne, V., Vigmond, E. & Zemzemi, N.) 55–63 (Springer, 2019).
  130. Coenen, A. et al. Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium. Circ. Cardiovasc. Imaging11, e007217 (2018). ArticlePubMedGoogle Scholar
  131. Papademetris, X., Sinusas, A. J., Dione, D. P. & Duncan, J. S. Estimation of 3D left ventricular deformation from echocardiography. Med. Image Anal.5, 17–28 (2001). ArticleCASPubMedGoogle Scholar
  132. Finsberg, H. et al. Computational quantification of patient-specific changes in ventricular dynamics associated with pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol.317, H1363–H1375 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  133. Giffard-Roisin, S. et al. Transfer learning from simulations on a reference anatomy for ECGI in personalized cardiac resynchronization therapy. IEEE Trans. Biomed. Eng.66, 343–353 (2019). ArticlePubMedGoogle Scholar
  134. Meister, F. et al. Deep learning acceleration of total Lagrangian explicit dynamics for soft tissue mechanics. Comput. Methods Appl. Mech. Eng.358, 112628 (2020). ArticleGoogle Scholar
  135. Konukoglu, E. et al. Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to eikonal-diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Biol.107, 134–146 (2011). ArticlePubMedGoogle Scholar
  136. The Medical Futurist. FDA approvals for smart algorithms in medicine in one giant infographic. Medical Futuristhttps://medicalfuturist.com/fda-approvals-for-algorithms-in-medicine (2019).
  137. Saltybaeva, N., Schmidt, B., Wimmer, A., Flohr, T. & Alkadhi, H. Precise and automatic patient positioning in computed tomography: avatar modeling of the patient surface using a 3-dimensional camera. Invest. Radiol.53, 641–646 (2018). ArticlePubMedGoogle Scholar
  138. Taylor, C. A., Fonte, T. A. & Min, J. K. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol.61, 2233–2241 (2013). ArticlePubMedGoogle Scholar
  139. Lu, M. T. et al. Noninvasive FFR derived from coronary CT angiography: management and outcomes in the PROMISE trial. JACC Cardiovasc. Imaging10, 1350–1358 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  140. Bluemke, D. A. Radiology in 2018: are you working with AI or being replaced by AI? Radiology287, 365–366 (2018). ArticlePubMedGoogle Scholar
  141. Willemink, M. J. et al. Photon-counting CT: technical principles and clinical prospects. Radiology289, 293–312 (2018). ArticlePubMedGoogle Scholar
  142. Weese, J. & Lorenz, C. Four challenges in medical image analysis from an industrial perspective. Med. Image Anal.33, 44–49 (2016). ArticlePubMedGoogle Scholar
  143. Hutter, F., Kotthoff, L. & Vanschoren, J. (eds) Automated Machine Learning: Methods, Systems, Challenges (Springer, 2019).
  144. Minter, S. et al. Crowdsourcing consensus: proposal of a novel method for assessing accuracy in echocardiography interpretation. Int. J. Cardiovasc. Imaging34, 1725–1730 (2018). ArticlePubMedGoogle Scholar
  145. Pace, D. F. et al. Interactive whole-heart segmentation in congenital heart disease. Med. Image Comput. Comput. Assist. Interv.9351, 80–88 (2015). PubMedPubMed CentralGoogle Scholar
  146. Chen, L. et al. Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal.58, 101539 (2019). ArticlePubMedGoogle Scholar
  147. Arafati, A. et al. Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovasc. Diagn. Ther.9 (Suppl. 2), S310–S325 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  148. Chartsias, A. et al. Disentangled representation learning in cardiac image analysis. Med. Image Anal.58, 101535 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  149. Sengupta, P. P. et al. Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist: reviewed by the American College of Cardiology Healthcare Innovation Council. JACC Cardiovasc. Imaging13, 2017–2035 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  150. Barredo Arrieta, A. et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion.58, 82–115 (2020). ArticleGoogle Scholar
  151. Cabitza, F., Rasoini, R. & Gensini, G. F. Unintended consequences of machine learning in medicine. JAMA318, 517–518 (2017). ArticlePubMedGoogle Scholar
  152. European Commission. Ethics guidelines for trustworthy AI. European Commissionhttps://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai (2019).
  153. Recht, M. P. et al. Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur. Radiol.30, 3576–3584 (2020). ArticlePubMedGoogle Scholar

Acknowledgements

Part of the authors’ work has been supported by the French Government, through the National Research Agency (ANR): 3IA Côte d’Azur (ANR-19-P3IA-0002), IHU Liryc (ANR-10-IAHU-04) and Equipex MUSIC (ANR-11-EQPX-0030). The research leading to these results has also received European funding from the ERC starting grant ECSTATIC (715093).